
Efficient Processing of MPEG-21 Metadata
in the Binary Domain

Christian Timmerera, Thomas Franka, Hermann Hellwagnera, Jörg Heuerb, and Andreas Hutterb

a Klagenfurt University, Department of Information Technology , A-9020 Klagenfurt, Austria

b Siemens AG, Corporate Technology IC 2, D-81730 Munich, Germany

Department of Information Technology (ITEC)
Klagenfurt University
Technical Report No. TR/ITEC/05/1.10
August 2005

Efficient Processing of MPEG-21 Metadata
in the Binary Domain

Christian Timmerer*a, Thomas Franka, Hermann Hellwagnera, Jörg Heuerb, and Andreas Hutterb
a Klagenfurt University, Department of Information Technology , A-9020 Klagenfurt, Austria

b Siemens AG, Corporate Technology IC 2, D-81730 Munich, Germany

ABSTRACT
XML-based metadata is widely adopted across the different communities and plenty of commercial and open source
tools for processing and transforming are available on the market. However, all of these tools have one thing in
common: they operate on plain text encoded metadata which may become a burden in constrained and streaming
environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we
present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format
for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have
developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of
processing instructions – based on traditional XML transformation techniques – operating on bit patterns instead of
cost-intensive string comparisons.

Keywords: universal multimedia access, multimedia adaptation, compressed-domain metadata processing, bitstream
adaptation in constrained and streaming environments, MPEG-21, Digital Item Adaptation, generic Bitstream Syntax
Description

1. INTRODUCTION AND MOTIVATION
Today’s multimedia communication is inconceivable without the support of metadata to help managing the multitude
of possible usage scenarios that are enabled by the high variety of devices accessing multimedia content through a
plethora of heterogeneous networks. Furthermore, the diverse set of coding formats, user characteristics, and user
preferences needs to be taken into account in order to enable Universal Multimedia Access (UMA)1,2 for the end user.
For UMA, metadata is playing a key role in supporting seamless access to any type of (multimedia) content anywhere
and anytime. UMA has become a driving concept behind a significant amount of research and standardization
activities. One of MPEG’s (Moving Picture Experts Group) most recent responses to the UMA challenges is MPEG-21
Digital Item Adaptation (DIA).

MPEG-21 provides a multimedia framework enabling the interaction of Users by means of so-called Digital Items, i.e.,
the Digital Item is the object of interaction3. Therefore, MPEG-21 introduces key concepts like User (please note the
upper case “U”) and Digital Item. A Digital Item is the fundamental unit of transaction within the MPEG-21
framework and aggregates multimedia resources together with metadata, licences, identifiers, intellectual property
management and protection (IPMP) information, and methods. Users interacting with Digital Items include individuals
as well as communities or organizations. It is important to note that Users are not restricted to humans; a User within
the MPEG-21 framework may also include intelligent software modules such as agents. Hence, in this paper the term
“user” refers to a (human) end user and “User” refers to the broader notion as defined in MPEG-21.

The part of MPEG-21 that is essential for UMA is part 7, entitled Digital Item Adaptation (DIA)4. DIA aims to achieve
interoperable transparent access to (distributed) advanced multimedia content by shielding users from network and
terminal installation, configuration, management, and implementation issues. In order to achieve this goal, the
adaptation of Digital Items is required. Therefore, DIA provides tools, i.e., normative description elements based on
XML, supporting the adaptation process of Digital Items – including audio-visual multimedia resources – in a device
and coding format independent way. Additionally, it has been demonstrated that these tools can be used within
constrained and streaming environments5. In particular, DIA specifies – among others – an XML-based metadata
format enabling the description of the high-level multimedia bitstream syntax in a generic way, i.e., in terms of packets,
layers, headers, etc. Such a description is referred to as generic Bitstream Syntax Description (gBSD) which can be
transformed according to the parameters extracted from the context in which the multimedia content is intended to be

* christian.timmerer@itec.uni-klu.ac.at; phone +43 (463) 2700 3621; fax +43 (463) 2700 3699; www.itec.uni-klu.ac.at

consumed. Note that the context description is
also an integral part of DIA including four
major categories, namely terminal capabilities
and network conditions/capabilities as well as
user and natural environment characteristics.
The transformed gBSD controls a generic
processor – the behaviour is defined by the
MPEG-21 DIA standard – which adapts a
given bitstream without having knowledge
about the coding format of the original
multimedia bitstream. As such, this approach
enables the construction of coding format
agnostic multimedia adaptation engines. The
high-level architecture of such an engine is
depicted in Figure 1.

Multimedia content is usually encoded using
highly efficient compression techniques and
real-time processing thereof can be achieved as
well. Most coding schemes provide certain

scalability dimensions, e.g., spatial, temporal, or signal-to-noise ratio, enabling adaptation by means of truncating the
bitstream, in some cases followed by minor update operations. Additionally, truly scalable coding techniques6 are
becoming available. All these operations do not require the decoding of the bitstream.

Figure 1 — High-level architecture of a coding format agnostic
adaptation engine.

Metadata, on the other hand, is mainly XML-based and encoded in plain text. When metadata is transported together
with the multimedia content, bandwidth requirements are increasing which is unacceptable in constrained and
streaming environments. Furthermore, end users do not understand why they have to pay for metadata they do not see
even though these are required for an improved multimedia experience. Consequently, the metadata overhead needs to
be reduced by means of appropriate encoding schemes and processing thereof needs to be as efficient as for the
corresponding media data, i.e., within the compressed/encoded (binary) domain. A first step towards processing
metadata within the binary domain is based on intelligent fragmentation techniques7 which utilize MPEG’s Binary
Format for Metadata (BiM) exploiting special encoder configuration settings to enable the filtering and updating of
XML fragments within the binary domain. However, this approach has several drawbacks, e.g., for complex
transformations the compression performance decreases due to the required fragmentation as briefly described in
Section 2.

In this paper we present enhanced binary encoding strategies that efficiently support the metadata filtering and
processing in the binary domain while preserving efficiency in terms of metadata overhead. A BiM payload parser is
suggested that does not rely on a specific fragmentation of the XML data. To achieve this, BiM needs to be extended
by binary encoding optimizations like tokenization of string values and skipping information8. Based on this parser, a
BiM transformer is responsible for the adaptation of the binary metadata. XML transformation templates that are
currently used in the uncompressed domain are translated into processing instructions and are passed to the BiM
transformer.

The remainder of this paper is organized as follows. Section 2 describes related work and Section 3 provides
background information on MPEG’s approach of binary encoding of metadata and its native support for binary
filtering. Enhanced binary encoding strategies are presented in Section 4. The new event-based binary XML
transformation technique based on so-called processing instructions is described in Sections 5 and 6, respectively.
Experimental results are presented in Section 7 and Section 8 concludes the paper.

2. RELATED WORK
Traditional XML transformation tools have their focus on transforming only plain text encoded XML descriptions.
XSLT9 is its most popular representative which has the status of a W3C recommendation which currently advances to
version 2.0 and many implementations and tools are available. One major drawback of XSLT is that the complete

XML description must be in memory before being processed which is a burden in streaming scenarios. STX10 which is
based on SAX (Simple API for XML) events seems to be a promising candidate to overcome this burden but still
operates on plain text XML. Tools like FXT (Functional XML Transformation)11, XDuce12, and HaXml13 are not that
established but operate on plain text as well.

Further related work can be found in another paper8 which provides an evaluation of several binary XML encoding
optimizations, i.e., alternative serialization format, tokenization, and skip-to pointers which are also introduced in this
paper. However, this evaluation concentrates on parsing performance only and has shown that such optimization
facilitate a performance gain up to a factor of six (for parsing only) – depending on the document structure and the
required information – compared to the fasted XML parser they were aware of (i.e., xpat14).

Besides the binary XML efforts within MPEG, ISO/IEC has put some joint efforts with ITU-T towards an alternative
XML serialization within the ASN.1 (Abstract Syntax Notation One) group. Therefore, mapping rules between XML
schemas and ASN.1 schemas are defined15,16 and for ASN.1 instances efficient binary encoding schemes such as
Packed Encoding Rules (PER)17 or Encoding Control Notation (ECN)18 are available. In practice, however, no
common API capable of handling both types of data (i.e., XML and ASN.1) is available and transformation between
the two representations is uneconomical.

In addition to the above mentioned efforts, the Web service community has also recognized the verbosity of XML as
an issue and is currently developing alternative XML serialization schemes known as Fast Infoset19 and Fast Web
Services20 which are built upon ASN.1 as described above. Therefore, an indexing mechanism which associates an
index to each XML element enabling its usage for further occurrences of the same XML element, i.e., highly repetitive
content will benefit from this approach. However, for small and complex XML documents the index table would
introduce additional redundancy and is not applicable in streaming scenarios.

3. BACKGROUND
A promising candidate for binary encoding of XML-based metadata which (partially) fulfils the aforementioned
requirements is MPEG’s Binary Format for Metadata (BiM)21,22,23. Following several experimental investigations
within the MPEG-21standardization process, BiM has been selected as the binary format for MPEG-21 metadata and is
now specified in part 16 of MPEG-2124. BiM has been recently moved from MPEG-7 to the first part of a new MPEG
standard named MPEG-B which is dedicated to generic media tools which are heavily used across MPEG standards.

BiM is an XML Schema aware encoding scheme for XML documents, i.e., it uses information from the XML Schema
to create an efficient (compressed) serialization of XML documents within the binary domain. This schema knowledge
enables the removal of structural redundancy, e.g., element and attribute names known from the XML Schema
definition, which achieves high compression ratios with respect to the document structure. Furthermore, element and
attribute names as well as data are encoded using dedicated codecs mapped to selected data types (e.g., integer, float,
string) which further increases the compression ratio. Additionally, one of the main features of BiM is that it provides
streaming capabilities for XML-based data which is not natively supported by XML. Therefore, BiM enables the
fragmentation of the XML tree into access units (AUs) containing one or more fragment update units (FUUs). Each
FUU includes the FU command, FU context, and FU payload which are described briefly in the following:

― The FU command specifies the decoder action for the corresponding fragment which can be either add, delete,
replace, or reset, i.e., BiM also provides partial updates of an XML document on the receiver side.

― The FU context is used to uniquely determine the location of the signalled fragment in the XML document.

― The FU payload contains the actual XML fragment data for the node addressed by the FU context.

BiM provides a degree of native support for binary filtering at the FUU level by exploiting the structure of the FU
context which is represented as a path. This path is divided into a list of node names and a list of position codes
separated by a unique path termination code. The representation of the context supports the filtering for certain context
paths independent of their position by bit pattern matches of the node name representations. For example, an XML path

expression like /el1/el2/el3 can be matched against the context path of an FUU by using only the first part of the
FU context, i.e., regardless of its actual position within the complete XML document.

For transformations of metadata as illustrated in Figure 1 not only the context of fragments is relevant but also values
of attributes and elements which trigger transformation operations. Thus, a coding scheme7 can be configured in which
each FUU is actually split in at least two FUUs: in a first FUU which only contains values for testing conditions of
transformation operations and in a second FUU (or even more) which contains values which are transformed. This
fragmentation is increased to support complex condition tests and operations though. The gain of flexibility in the
transformation on the other hand results in a drawback of efficiency: redundancy is introduced in form of context
information and the usage of the Zlib encoding scheme25 – which is part of BiM version 223 –considerably decreases
the compression ratio for small fragments. Thus, in this paper we describe a more comprehensive approach based on
enhanced binary encoding strategies and event-based binary XML transformations which helps to overcome these
issues.

4. ENHANCED BINARY ENCODING STRATEGIES
MPEG’s BiM already supports various encoding strategies and provides an extension mechanism which enables the
integration of external or third party encoding schemes. Some of them have been proven and validated as very useful
and are now an integral part of the standard, e.g., the usage of the Zlib encoding scheme for string values has been
adopted within the advanced optimization schemes of BiM version 2. However, it is optional on the encoder side to
configure the use of Zlib.

In this section we present how enhanced binary encoding strategies such as tokenization of string values and
introduction of skipping information are applied to BiM. Note that MPEG-21 metadata such as gBSDs could extremely
benefit form such enhancements due to its data characteristics, i.e., recurring label and marker tokens. Furthermore, it
has been already demonstrated that tokenization and skipping information increases the parsing speed of XML
documents up to a factor of six8 but not specifically in the context of BiM.

4.1. Tokenization
The main obstacle for a fragmentation independent processing of BiM encoded XML content is the way of coding
string values. BiM provides two default codecs for string values in the two versions of the standard. In BiM version 1
string values are encoded uncompressed – UTF-8 string preceded by its size in bytes – between structural information
and values with different data types (e.g., boolean or integer values) as depicted in Figure 2.

Figure 2 — Coding of string values in BiM version 122.

BiM version 2 has adopted the Zlib encoding scheme which normally provides increased compression efficiency –
except for small fragments as mentioned above. During encoding, string values are gathered in a fixed-size buffer
which is compressed when the buffer is full or end-of-payload is reached. The resulting compressed chunk of data is
placed at the expected position of the first string within the resulting bitstream. Figure 2 shows a BiM bitstream
compliant to version 1, i.e., without the Zlib codec. String values (in grey) are distributed over the entire bitstream.
Figure 3 illustrates the two phases of the Zlib encoding process of BiM version 2. The first phase, i.e., buffering,
gathers the string values into a fixed-size buffer. The second phase, i.e., compression, applies the Zlib algorithm to the
buffer from phase one which may contain several string values. The compressed Zlib buffer can be found at the
position of the first string in this buffer. This position is exploited during the decoding process, i.e., all string values of
this Zlib chunk are decompressed into the Zlib buffer. As such, string values are becoming available to the application
for consumption through the Zlib buffer. If the Zlib buffer is empty, the next chunk is decompressed into the buffer.

Figure 3 — Coding of string values in BiM version 223.

This Zlib codec prohibits the processing of BiM data within the binary domain without decompressing and decoding all
Zlib chunks. The position of the next Zlib chunk in the BiM stream is not known until the last string of the current
decompressed chunk is consumed. Even if none of these string values is needed all chunks have to be read and decoded
to be able to read the remainder of the bitstream correctly.

However, BiM provides the possibility to introduce special codecs for defined XML types. In order to be able to
support processing BiM data in the binary domain, a new codec for attribute and element content of string type using
tokenization has to be introduced. Tokenization is a powerful concept for compression since recurring strings need not
be repeated within the binary data. Instead of encoding the string value itself several times, a much smaller token
identifier can be used to point to the value at each occurrence. The application performance can also be improved by
using tokenization, i.e., expensive string comparisons can be replaced by just comparing the token values – typically a
byte or an integer.

The proposed way for a mapping of string values and tokens is a string table that has to be built up for each fragment
during the encoding phase. Strings have to be inserted into the table and the corresponding token has to be encoded. If
a new string is already part of the table, it is not inserted again. The token of the already inserted string will be
encoded. The table – which can be Zlib compressed – can be written to the beginning of the payload (see Figure 4) or
just before the first occurrence of a token value within the payload. As such, it can be treated as a special BiM type
codec without the need of an extension of the BiM format.

Figure 4 — Coding of string values using tokenization.
Figure 5 – Usage of skipping information.

The decoder reads the table and decompresses it, if needed. The rest of the payload can be processed in the binary
domain. If it is known that string values are of no relevance for further processing the document, the decompression of
the table can be skipped or the decompression process can be deferred to the moment when the first string value is
needed.

4.2. Skipping Information
An enhancement in terms of processing performance is adding pointers from one node within the tree to its next sibling
node. By adding this skipping information a random access within the payload can be simulated and a full depth-first
traversal of the whole tree is not required. This can be helpful if only parts of the document are of relevance for the
further processing and especially if this is the case with deeply nested data. Figure 5 shows the usage of this skipping
information. If the required information can be found in node D and in node A and B it can be decided that there is no
relevant information in the corresponding sub-trees, these nodes can be skipped and the processing can be continued at
node C. A traversal of the whole tree including sub-trees X and Y is not needed.

This sibling offset is already part of BiM but its existence needs to be signalled by a special flag at the beginning of
each payload. With skipping information, the encoder has to be configured in a way that this length information has to
be mandatory to enable the processing application to use this enhancement.

5. EVENT-BASED BINARY XML PARSING
In general, event-based XML parsers implement the so-called push model where the parser reads the data stream and,
for each XML token it encounters, an event is generated. The event contains implicit and explicit information about the
token that was read. By using an event model, the parser pushes the information to the client application. A well-
known and commonly used exponent of this parsing model is the simple application programming interface for XML,
better known as SAX26. A parser compliant to the de-facto standard SAX enables simple access to the XML data
through its content handler which receives the events from the underlying parser. Such events indicate the start/end of
the document and elements respectively, attributes are collected in a special attribute list. In practice, however, these
events provide only the string representation of the element or attribute names which are not suitable for binary
encoded XML content. Furthermore, the current SAX specification does not take into account BiM specifics such as
fragmentation into access or fragment update units. Therefore, we have developed the BiM API for XML (BAX) which
basically relies on the same principles as SAX but provides full support for binary encoded XML data compliant to the
BiM standard. In addition to the usual SAX events, a couple of new event types have been introduced taking into
account the streaming functionality of BiM, i.e., events indicating the start/end of access units and fragment update
units have been defined. It is important to note that all events provide data in binary form according to the BiM
standard, i.e., no translation to the string representation is performed by the parser, which allows for fast XML
processing and transformation within the binary domain by using simple bit manipulation techniques. Additionally, our
parser supports the enhanced binary encoding techniques as described in Section 4.

The following BAX events are currently defined and briefly described in the subsequent paragraphs: start/end access
unit (startAu, endAu), start/end fragment update unit (startFuu, endFuu), context path element (pathElement), start/end
payload (startPayload, endPayload), start/end element (startElement, endElement), and content (content).

Start/end access unit (startAu, endAu). These events indicate the start and the end of BiM access units, respectively.
Note that the startAu event is the first method being invoked before any other method within this interface. As such,
these events become quite similar to the start/end document event from SAX. The startAu event contains one
parameter providing the number of fragment update units within this access unit.

Start/end fragment update unit (startFuu, endFuu). These events are triggered due to the start and the end of a
fragment update unit, respectively. The startFuu method contains three parameters, namely the length of the FUU, the
FUU command, and the remaining parts of the context path (e.g., position codes) to which the FUU belongs. Note that
the element nodes within the context path are provided by (several) pathElement events. Additionally, the startFuu
method returns a Boolean value indicating whether this FUU can be skipped or not. This decision may be performed,
for example, based on the context path (e.g., this element and its children are not required by the application) or FUU
command (e.g., remove).

Context path element (pathElement). The path element event indicates an element within the context path of the
fragment update unit according to the BiM standard. For elements within the FUU context path, no startElement and
endElement will be received, but one pathElement event for each node in the context path. The parameters of this event
identify the tokens representing the element name as well as the type name if the current element contains a type
substitution indicated by an 'xsi:type' attribute. If no type substitution has been performed, a NULL pointer is passed
instead of the token which indicates the type from the schema. The third parameter contains the binary information
belonging to this element, e.g., the binary type substitution information. As for the startFuu, the pathElement returns a
Boolean value indicating whether the current FUU is required or can be skipped.

Start/end payload (startPayload, endPayload). These events indicate the beginning and end of the payload,
respectively. The startPayload event provides one parameter defining the decoding mode as specified in the BiM
standard, i.e., some flags containing information about the length encoding, general settings for type substitution, etc.

Start/end element (startElement, endElement). The startElement determines the start of an element and provides
additional information through its parameters. The first two parameters provide the binary tokens indicating the
element name and, if needed, the substituted type name according to the schema. Subsequently, the next parameter
provides structural information such as flags as well as decoding information for the choices and loops in the final state
machine. Additionally, this parameter provides information about schema updates, and substitution groups. The length
of the element is given by the fourth parameter. Finally, the fifth parameter contains the list of attributes ordered by
name. Each attribute consists of an id, a type id, and its binary value. The id is the schema token that identifies the
attribute name. The type id identifies the name of the type. The binary value is the BiM-encoded value of the attribute.
Note that optional attributes are indicated by a NULL pointer if they are not encoded, i.e., not present.

Content (content). This event provides the binary content of an element. The schema token that identifies the type
name is given by the first parameter and the actual BiM encoded content by the second parameter.

6. PROCESSING INSTRUCTIONS
MPEG-21 DIA based adaptation as introduced in Section 1 performs the bitstream adaptation via the XML domain by
first transforming the corresponding XML document describing this bitstream. In most cases the adaptation of scalable
bitstream formats can be accomplished by removing or truncating bitstream segments corresponding to specific
scalability layers followed by possible minor editing operation such as updating certain parameters in the bitstream,
e.g., the number of remaining layers. In some cases the insertion of bitstream segments – after prior removal of some
segments – is required, e.g., in order to be compliant with video buffer verifier models27. Thus, the transformation of
XML documents describing scalable bitstream formats can be classified into three major categories, namely remove,
update, and insert operations:

― The remove operation deletes a certain element from an XML document. As a consequence, the corresponding
bitstream segment is removed as well during the actual bitstream adaptation process. The element being
removed is usually identified by an appropriate XML path expression within the XML transformation style
sheet. Note that the remove operation on an element also applies to the child elements and attributes.

― The update operation alters the value of a certain parameter within the bitstream. The value which needs to be
updated is identified by means of an XML path expression and the new parameter value is either provided by
an XML path expression or a constant value.

― The insert operation includes a new XML element at the position identified by an XML path expression.

Note that the actual specification of these basic transformation instructions is rather abstract such that bindings to
common XML transformation languages (e.g., XSLT, STX) can be defined. This is required due to syntactic and
semantic differences of some components within these languages, e.g., XSLT uses XPath whereas STX has defined its
own XML path language named STXPath which basically differs in the semantics of the context definition. The XSLT
binding of the transformation instructions is shown in Document 1 – the STX binding is similar but is not shown here
due to space limitations.

<xsl:stylesheet version=”1.0” xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.itec.uni-klu.ac.at/2005/stb" xmlns:stb="http://www.itec.uni-klu.ac.at/2005/stb">
 <xsl:template name="stb:remove"> <!-- #### REMOVE operation #### -->
 <xsl:param name="node"/>
 </xsl:template>
 <xsl:template name="stb:update"> <!-- #### REMOVE operation #### -->
 <xsl:param name="node"/>
 <xsl:param name="value"/>
 <xsl:value-of select="$value"/>
 </xsl:template>
 <xsl:template name="stb:insert"> <!-- #### REMOVE operation #### -->
 <xsl:param name="curNode"/>
 <xsl:param name="insNode"/>
 <xsl:copy-of select="$insNode"/>
 </xsl:template>
</xsl:stylesheet>

Document 1 — Generic XSLT templates for common gBSD transformation operations.

The basic operations stb:remove, stb:update, and stb:insert are defined in their own namespace – preceded with
the stb prefix (streaming transformations for BiM) – which can be exploited by a customized style sheet processor
providing additional information to subsequent processing steps as described in the following.

Traditional XML transformation techniques such as XSLT or STX perform the actual transformation by copying the
remaining nodes or events from the source to the result structure. The removed elements simply disappear from the
resulting set of nodes or events. In practice, however, the set of nodes or events being transformed is usually smaller
than the set of remaining nodes or events resulting in a considerable performance gain of the overall adaptation
process. The high-level adaptation architecture of such a streaming XML transformer is depicted in Figure 6. The BiM
source stream is parsed with the BAX parser as described in Section 5 providing the source events as an input to the
XML transformer. The style sheet itself is parsed into an internal memory structure and the templates (including the
transformation instructions) are passed to the event transformer. The output of the event transformer is twofold. First,
the result events are generated corresponding to the aforementioned remaining events which may be used for other
purposes, e.g., for multi-step adaptations28. Second, transformed events are generated which may be used by a
gBSDtoBin-like processor performing the actual bitstream adaptation. As such, the transformed events provide
intrinsic support for combined processing in the XML transformer and the gBSDtoBin processor.

Figure 6 — Architecture of Streaming Transformer for BiM.

7. EXPERIMENTAL RESULTS
We conducted a series of experiments to measure and compare the performance of the different binary encoding
strategies and XML transformation tools. In particular, we measured the compression ratio of the encoding strategies as
formulated in Section 4 and compared the results to Zlib-enabled BiM encoding. Additionally, the XML transformation
performance has been investigated in detail. All tests were performed on a 2.8 GHz P4 Mobile machine with 512 MB
main memory and Windows XP service pack 2 installed.

For the compression ratio we have compared the original plain-text XML size with several encoding strategies, namely
uncompressed strings (i.e., without Zlib), with Zlib encoding scheme enabled, our token-based string codec encoded as
fixed-size 8 bit, and our token-based string codec encoded as vluimsbf5 (variable length unsigned integer most
significant bit first 5bit, i.e., a variable length codec for unsigned integers defined within BiM). For the transformation
performance we have considered MSXML version 4.0 Service Pack 2, Xalan-C version 1.9.0 (utilizing Xerces-C
v2.6.0), and our streaming transformations for BiM (STB) processor version 0.0.1 which utilizes our BiM API for
XML version 0.0.1.

The test data set comprises generic Bitstream Syntax Descriptions (gBSDs) describing audio (jm_gbsd.xml), video
(akiyo_gbsd.xml, foreman_gbsd.xml), and image resources (city_gbsd.xml, shanghai_gbsd.xml). For audio the MPEG-
4 Bit Sliced Arithmetic Coding (BSAC) codec is chosen providing fine-grained scalability through enhancement
layers. The BSAC gBSD is described at a frame and group of frames (GOF) level (i.e., 10 and 25 frames per GOF
respectively). For video we used MPEG-4 Visual Elementary Streams (VES) encoded at the Advanced Simple Profile
which includes B-frames. The VES gBSDs are provided at the same granularity as the BSAC gBSDs. Finally, images
are encoded using the JPEG 2000 wavelet-based compression algorithm. The JPEG 2000 images are completely
described by the gBSD, i.e., without providing the gBSD data on a fragment basis. The test data is taken from the
current MPEG-21 reference software29 and the gBSD describing the akyio MPEG-4 visual elementary stream is
excerpted in Document 2.

<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
 xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS">
 <dia:DescriptionMetadata>
 <dia:ClassificationSchemeAlias alias="M4V" href="urn:mpeg:mpeg4:visual:cs:syntacticalLabels"/>
 </dia:DescriptionMetadata>
 <dia:Description xsi:type="gBSDType" addressUnit="byte" addressMode="Absolute"
 bs1:bitstreamURI="content/akiyo.cmp">
 <gBSDUnit syntacticalLabel=":M4V:VO" start="0" length="4"/>
 <gBSDUnit syntacticalLabel=":M4V:VOL" start="4" length="14"/>
 <gBSDUnit start="18" length="5830" marker="ICRAParentalRatingViolenceCS-6">
 <gBSDUnit syntacticalLabel=":M4V:I_VOP" start="18" length="4641"/>
 <gBSDUnit syntacticalLabel=":M4V:P_VOP" start="4659" length="98"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP" start="4757" length="16"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP" start="4773" length="23"/>
 <!--... and so on ...-->
 </gBSDUnit>
 <!--... and so on ...-->
 </dia:Description>
</dia:DIA>

Document 2 — Excerpt of a gBSD describing an MPEG-4 visual elementary stream.

The results of the experiments are depicted in Figure 7 to Figure 10. Figure 7 shows the compression efficiency of
different string encoding strategies compared to the original plain text XML file. Using the string–token codec
introduced in Subsection 4.1 is almost as efficient for encoding of video and image descriptions as the BiM version 2
(i.e., with Zlib codec enabled). In case of audio descriptions an increase in terms of compression efficiency can be
noticed. The reason for this rather huge increase is a difference in the size of the string buffers that are Zlib
compressed. The whole string table of the string-token codec is Zlib compressed as one chunk, where the BiM Zlib
codec uses several chunks. The reason for differences in using 8 bit fixed length tokens or the string-token codec with
variable length is the number of strings in the mapping table of the string-token codec. Regularly recurring string
values can be heavily found in the MPEG-4 VES gBSDs akiyo_gbsd.xml and foreman_gbsd.xml. This leads to string
tables with very few entries. Both above mentioned gBSDs contain not more than 16 different entries, i.e., each token
can be coded in one 5 bit chunk. In some cases the compression ratio of the string-token codec is slightly fewer than
BiM version 2 with Zlib enabled (e.g., for akiyo1.xml) which can be explained due to the small number of entries in
the string table which is Zlib-encoded by default. However, the compression ratio increases if the string table is
provided uncompressed. The decision whether the string table should be Zlib encoded or not could be part of the
encoding process based on the number or size of the entries in the string table. The encoding format of the string table
could be signalled through a flag at the beginning of the string table.

22
.29

6.9
3

5.4
2

3.1
5

2.0
3

1.9
5

16
.21

12.8
3

12
.41

5.4
2

15.2
3

13
.69

19
.81

11
.17

10
.99

3.1
9

2.9
3

2.31

15
.29

11
.82

11
.31

5.4
0

15
.04

18
.4219.8

1

11.6
0

11
.48

3.2
0

2.9
4

2.3
1

15
.29

12
.31

11
.84

5.42

15.3
4

18
.82

0.00

5.00

10.00

15.00

20.00

25.00

akiyo1.xml akiyo10.xml akiyo25.xml jm1.xml jm10.xml jm25.xml

MPEG-4 VES (akiyoN.xml) and MPEG-4 BSAC (jmN.xml) gBSDs with N gBSDUnits in 1 AU

co
m

pr
es

si
on

 ra
tio

un-compr. strings (BiM v1)
Zlib (BiM v2)
token 8bit un-compr. string table
token 8bit Zlib-compr. string table
token vluimsbf5 un-compr. string table
token vluimsbf5 Zlib-compr. table

Figure 7 — Compression ratio using different string encoding strategies.

An enhanced processing performance has been expected by coding of skipping information. Figure 8 shows the
increase of binary size caused by coding all element lengths which is quite high. For MPEG-4 VES descriptions (akiyo
and foreman) about 15% of the total size is needed for length encoding, for JPEG 2000 and BSAC gBSD files the
overhead for length encoding is about 25%. In many cases gBSDs are normally not very deeply nested. Therefore, an
enhancement in terms of processing speed could not be noticed by using skipping information in the transformation
process. Nevertheless, BiM facilitates dynamically (de-)activating of this length encoding mode on a fragment update
unit basis which will be investigated as part of our future work.

2326 2501 3514

18219

13523

6257

4719

1091
398395

0

5000

10000

15000

20000

25000

30000

akiyo foreman city shanghai jm

si
ze

 in
 b

yt
es

additional bytes for length
encoding

binary size in bytes (w ith
tokens 8bit)

Figure 8 — Increase of binary size by adding skipping
information.

8.70

0.12 0.11
1.30

1.96

0.32 0.32

2.33

0.24

2.34 2.34

7.22

0.00

2.00

4.00

6.00

8.00

10.00

12.00

MSXML STB 8bit STB vluimsbf5 XALAN

akiyo_gbsd.xml: 1 VOP per FUU/AU

ru
nt

im
e

in
 m

ill
is

ec
on

ds

akiyo1 execute the transformation

akiyo1 parse stylesheet document

akiyo1 load source document

Figure 9 — Transformation runtime comparison per VOP.

For runtime comparisons the use case of B-Frame dropping in MPEG-4 videos has been selected. Therefore the
transformer has to delete all gBSDUnit elements (see Document 2) that contain an attribute syntacticalLabel with
the value :M4V:B_VOP. The removal itself is done by calling the stb:remove template as described in Section 6.

1.72
0.120.12

8.86

3.36

0.320.32

1.96
7.21

2.452.45

0.30

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

MSXML STB 8bit STB vluimsbf5 XALAN

akiyo_gbsd.xml: 10 VOPs per FUU/AU

ru
nt

im
e

in
 m

ill
is

ec
on

ds

akiyo10 execute the transformation

akiyo10 parse stylesheet document

akiyo10 load source document

Figure 10 — Transformation runtime comparison per GOV

with 10 VOPs per GOV.

1.16
0.130.13

8.79

1.96

0.41 0.32

3.41

0.40

2.812.81

8.50

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

MSXML STB 8bit STB vluimsbf5 XALAN

akiyo_gbsd.xml: 25 VOPs per FUU/AU

ru
nt

im
e

in
 m

ill
is

ec
on

ds

akiyo25 execute the transformation

akiyo25 parse stylesheet document

akiyo25 load source document

Figure 11 — Transformation runtime comparison per GOV
with 25 VOPs per GOV.

In terms of the total runtime the winner is clearly STB as illustrated in Figure 9, Figure 10, and Figure 11. The
differences in the loading time of the source document of MSXML, XALAN and the two STB versions are due to the
architecture of the transform applications. MSXML and XALAN are DOM-based and need more time to build up the
source trees whereas our STB is event-based and only has to read the source file in this phase without any further
processing. However, STB needs more time to execute the transformation because creating the events is assigned to
this phase of the total transformation process.

For the second MPEG-4 gBSD (foreman) similar results could be achieved. The only difference is a larger resulting
BiM file that needs more processing time to be serialized.

8. CONCLUSION AND FUTURE WORK
In this paper we have presented a comprehensive approach for transforming MPEG-21 metadata – notably gBSDs
which might become very large depending on the granularity of the description – in the binary domain which
eliminates the drawbacks from previous work7 while preserving efficiency in terms of compression ratio and
transformation time. Our work is based on an event-based push parser for BiM encoded metadata and processing
instructions operating on binary values instead of cost-intensive string comparisons.

In future work, we will further develop and evaluate this approach with regard to the combined processing of gBSD
transformation and bitstream generation using gBSDtoBin as indicated in Section 6.

ACKNOWLEDGMENTS
Part of this work is supported by the European Commission in the context of the DANAE (Dynamic and distributed
Adaptation of scalable multimedia coNtent in a context Aware Environment) project (IST-1-507113). Further
information is available at http://danae.rd.francetelecom.com.

REFERENCES
1. R. Mohan, J. R. Smith, and C.-S. Li, "Adapting Multimedia Internet Content for Universal Access", IEEE

Transactions on Multimedia, vol. 1, no. 1, pp. 104-114, Jan.-Mar. 1999.
2. A. Vetro, C. Christopoulos, and T. Ebrahami, eds., IEEE Signal Processing Magazine, special issue on Universal

Multimedia Access, vol. 20, no. 2, March 2003.
3. F. Pereira, J. R. Smith, and A. Vetro, eds., IEEE Transactions on Multimedia, special section on MPEG-21, vol. 7,

no. 3, June 2005.

4. ISO/IEC 21000-7:2004, Information Technology – Multimedia Framework – Part 7: Digital Item Adaptation,
October 2004.

5. C. Timmerer, G. Panis, and E. Delfosse, "Piece-wise Multimedia Content Adaptation in Streaming and
Constrained Environments (invited paper)", 6th Int'l Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS 2005), Montreux, Switzerland, April 2005.

6. J.-R. Ohm, "Advances in Scalable Video Coding", Proceedings of the IEEE, vol. 93, no. 1, pp. 42-56, January
2005.

7. C. Timmerer, P. Lederer, and H. Kosch, "Towards Transforming MPEG-21 Metadata within the Binary Domain",
4th Int’l Workshop on Content-Based Multimedia Indexing (CBMI 2005), Riga, Latvia, June 2005.

8. R. J. Bayardo, D. Gruhl, V. Josifovski, J. Myllymaki, "An Evaluation of Binary XML Encoding Optimizations for
Fast Stream Based XML Processing", 13th Int’l Word Wide Web Conf., New York, USA, pp. 345-354, May, 2004.

9. World Wide Web Consortium (W3C), XSL Transformations (XSLT) Version 1.0, W3C Recommendation, Nov.
1999. http://www.w3.org/TR/xslt.

10. Streaming Transformations for XML (STX) Version 1.0, Working Draft, July 2004. http://stx.sourceforge.net/.
11. A. Berlea, H. Seidl, "Fxt - A Transformation Tool for XML Documents", Int’l XML Conf. & Exposition, Dec.

2001.
12. H. Hosoya and B. C. Pierce, "XDuce: A typed XML processing language", ACM Transactions on Internet

Technology, vol. 3, no. 2, pp. 117-148, May 2003.
13. M. Wallace and C. Runciman, "Haskell and XML: Generic Combinators or Type-Based Translation?", Int’l Conf.

on Functional Programming, pp. 148-259, September 1999.
14. C. Cooper, Using expat, xml.com, 1999. http://www.xml.com/pub/a/1999/09/expat/index.html.
15. ITU-T and ISO/IEC, "Encoding Using XML or Basic ASN.1 Value Notation", ITU-T Rec. X.693 (2001) | ISO/IEC

8825-4:2001, 2001.
16. ITU-T and ISO/IEC, "Mapping W3C XML Schema Definitions into ASN.1", ITU-T Rec. X.694 (2004) | ISO/IEC

8825-5:2004, 2004.
17. ITU-T and ISO/IEC, "Information technology – ASN.1 encoding rules: Specification of Packed Encoding Rules

(PER)", ITU-T Rec. X.691 (2002) | ISO/IEC 8825-2:2002, 2002.
18. ITU-T and ISO/IEC, "Information technology – ASN.1 encoding rules: Specification of Encoding Control

Notation (ECN)", ITU-T Rec. X.692 | ISO/IEC 8825-3, 2002.
19. P. Sandoz, A. Triglia, and S. Pericas-Geertsen, "Fast Infoset", Sun Developer Network Technical Article, June

2004, available at http://java.sun.com/developer/technicalArticles/xml/fastinfoset/.
20. P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley, and E. Pelegri-Llopart, "Fast Web Services", Sun

Developer Network Technical Article, August 2003, available at
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/.

21. O. Avaro and P. Salembier, "MPEG-7 Systems: Overview", IEEE Transactions on Circuits and Systems for Video
Technology, vol. 11, no. 6, pp. 760-764, June 2001.

22. ISO/IEC 15938-1:2002, Information technology — Multimedia content description interface — Part 1: Systems,
2002.

23. ISO/IEC 15938-1:2002/Amd 1:2005, Information technology — Multimedia content description interface — Part
1: Systems, AMENDMENT 1: Systems extensions, 2005.

24. C. Seyrat, ed., "ISO/IEC 21000-16 Information Technology – Multimedia Framework – Part 16: Binary Format",
Final Draft International Standard (FDIS), ISO/IEC JTC 1/SC 29/WG 11 N7247, Busan, Korea, April 2005.

25. P. Deutsch, J-L. Gailly, "ZLIB Compressed Data Format Specification version 3.3", RFC1950, May 1996,
available at http://www.ietf.org/rfc/rfc1950.txt.

26. The official website for SAX, http://www.saxproject.org.
27. P. Nunes, F. Pereira, "MPEG-4 compliant video encoding: analysis and rate control strategies", 34th Asilomar

Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, pp. 54-58, November 2000.
28. D. Jannach, K. Leopold, H. Hellwagner, and C. Timmerer, "A Knowledge Based Approach for Multi-step Media

Adaptation", 5th Int'l Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Instituto
Superior Técnico, Lisboa, Portugal, April 21-23, 2004.

29. F. De Keukelaere, G. Drury, C. Timmerer, and X. Wang, eds., "International Standard, Information technology —
Multimedia framework (MPEG-21) — Part 8: Reference Software", ISO/IEC 21000-8, Final Draft International
Standard (FDIS), ISO/IEC JTC 1/SC 29/WG 11 N7206, Busan, Korea, April 2005.

	INTRODUCTION AND MOTIVATION
	RELATED WORK
	BACKGROUND
	ENHANCED BINARY ENCODING STRATEGIES
	Tokenization
	Skipping Information

	EVENT-BASED BINARY XML PARSING
	PROCESSING INSTRUCTIONS
	EXPERIMENTAL RESULTS
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS

